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Abstract. We establish a close quantitative analogy between the excitation and ionization process of highly
excited one electron Rydberg states under microwave driving and charge transport across disordered 1D
lattices. Our results open a new arena for Anderson localization — a disorder induced effect — in a large
class of perfectly deterministic, decaying atomic systems.

PACS. 32.80.Rm Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states)
– 05.45.Mt Quantum chaos; semiclassical methods – 72.15.Rn Localization effects (Anderson or weak
localization)

1 Introduction

Probability transport in disordered media is an equally
exciting and active field at the very heart of statistical
physics. Many particle dynamics in a gas, turbulent hy-
drodynamic flow, the traffic flow across canonically over-
crowded European highways, and, last but not least, the
flow of money across stock and option markets are de-
scribed by statistical means. Also in the microscopic realm
we are often confronted with similar situations where it is
impossible to track each single detail of the system under
study — either because we ignore the precise form of the
potentials which generate the dynamics, or because the
number of individual constituents of the system is simply
too large, or a combination of both. Well-known exam-
ples thereof are the charge transmission through meso-
scopic wires, the scattering of slow neutrons off heavy nu-
clei, or the ion transport across cellular membranes. On
this microscopic level, however, when noise is sufficiently
weak, quantum interference and tunneling can dramati-
cally affect classical probability transport, and weak [1]
and strong (vulgo Anderson) localization [2], the Mott-
Hubbard metal-insulator transition (see Zoller’s contribu-
tion to this issue), Ericson fluctuations [3], chaos assisted
tunneling [4], or (universal) conductance fluctuations [5]
are just the most prominent ones of the many surpris-
ing phenomena which are born out by coherent complex
transport on the microscopic scale.

On a first glance, such signatures of complex dynam-
ics (brought about by random potentials and/or many-
particle interactions) appear precisely what we do not ex-

a e-mail: abu@mpipks-dresden.mpg.de

pect when dealing with well isolated atomic or quantum
optical systems. In the quest for an almost perfect control
of matter, we seek optimal control of the potentials which
determine the dynamics (see Gerber’s contribution), in
time and in space. Hence, how can such low-dimensional
systems mimic the complex dynamics of disordered sys-
tems? The answer is — precisely — Hamiltonian chaos,
induced by nonlinear and perfectly controlled coupling of
the few (at least two are needed [6]) degrees of freedom
available. Given a sufficiently high density of states (in a
quantum system with a discrete or quasi-discrete spec-
trum), such coupling can destroy the symmetries, and
this is the good quantum numbers of the unperturbed
dynamics, giving rise to an extremely complex spectrum
characterized by an abundance of anticrossings of strongly
variable size (see also Saenz’ contribution) [7]. If we now
prepare a wave function of arbitrary shape at an ar-
bitrary location in phase space, its time evolution will
indeed reflect the complex spectral structure, and, con-
sequently, feature the characteristic properties of com-
plex/disordered systems. This is the essential consequence
of the random matrix conjecture [8], which states that the
spectral properties of low dimensional quantum systems
with underlying chaotic classical dynamics exhibit the
same (universal) statistical features as complex quantum
systems described by Random Matrix Theory (which took
its origin in the attempt [9] to give a robust description
of compound nuclear reactions — despite the little knowl-
edge about the detailed nature of the potentials which
generate the experimentally observed cross sections).

Which are the good experimental observables to mon-
itor those features? In the usual setting of, e.g., charge
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transmission across a disordered lattice, transport occurs
in configuration space, and the experimentalist measures
a transmission probability. Such scenario can nowadays
be mimicked in quantum optical table top realizations of
“ideal” lattices, where a suitable laser configuration es-
tablishes a periodic (1D or 2D or 3D) potential, with
adjustable lattice constant and modulation depth. Cold
atoms or ions initially prepared at one specific location can
then be monitored as they move across the sample [10],
and it is equally possible to enforce the transition from lo-
calized to delocalized (in configuration space) eigenstates
on the lattice [11]. On the other hand, we may ask with
equal right whether certain phenomena familiar from the
theory of complex and/or disordered systems can be im-
ported to electronic dynamics on the scale of a single,
simple atom, with few degrees of freedom, and no a pri-
ori resemblance with familiar transport problems. In other
words, do disorder induced phenomena have any general
and robust bearing for the dynamics of simple atomic
systems exposed to strong perturbations? The answer is
positive, and can be elaborated for various of the above-
mentioned coherent transport phenomena. For reasons of
time and space, we shall specialize here to Anderson local-
ization in driven atomic systems, and, more specifically, in
atomic Rydberg states under microwave driving.

2 Anderson localization on the atomic scale

Anderson localization is a disorder induced effect, which
was predicted [2] by Anderson to occur in the transmis-
sion of a charge across a one dimensional, disordered lat-
tice. As depicted in Figure 1, the problem cooks down
to the transmission of a particle across a one-dimensional
random potential, at a given injection energy. The num-
ber of paths which guide the particle from the left to the
right of the sample is exponentially large, since at each
hump of the potential the particle can be either reflected
or transmitted (with randomly distributed transmission
and reflection coefficients), thus multiplying the available
paths by a factor of two at each hump. The transmission
amplitudes associated with these different paths acquire
randomly distributed phases as they migrate through the
sample, and interfere destructively (if the phases get ho-
mogeneously distributed over the unit circle) on exit at
the right edge of the sample. Hence, a disordered potential
leads to the suppression of transmission by quantum inter-
ference, and a more quantitative analysis shows that the
eigenfunctions of the particle are exponentially localized
over the lattice, with a characteristic localization length ξ.
The final figure of merit which determines the measured
conductance across the sample is ξ/L, with L the length of
the sample. ξ/L determines the population of the last site
right at the edge of the sample, and hence the probability
flux which can escape from the sample, via the coupling
matrix element connecting the last site to the leads —
attached to the sample to probe the conductance.

We now import this scenario to the atomic realm, more
specifically to the excitation and ionization dynamics of
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Fig. 1. The Anderson scenario: a particle (dashed horizontal
line) is transmitted across a disordered potential in 1D config-
uration space. At each hump, the particle can be reflected or
transmitted, with random reflection/transmission coefficients.
The atomic ionization problem under microwave driving at fre-
quency ω is strictly analogous if we replace reflection and trans-
mission by emission and absorption of a photon into/from the
driving field, and substitute configuration space by the energy
axis. The “atomic sample length” L is then the ionization po-
tential expressed in integer multiples of the photon energy ω,
and the “sample edge” is defined by the continuum threshold.
The atomic decay to the continuum (indicated by the right-
most arrow across the ionization threshold) is mediated by the
one photon transition matrix element from the highest bound
Rydberg state — connected to the initial state |φ0〉 (indicated
by the vertical arrow) by a sequence of near resonant (though
slightly detuned — small verticle ticks along the horizontal en-
ergy axis indicate the near resonantly coupled bound states,
dashed verticle lines highlight the lattice period) one photon
transitions. The population of this last bound state depends
exponentially on L/ξ, with ξ the characteristic decay length of
the localized wavefunction.

atomic Rydberg states under microwave driving. As men-
tioned above, for features of complex/disordered trans-
port to become manifest on the atomic scale, we need
a high density of states actively involved in the dynam-
ics. This is guaranteed in the Rydberg regime under mi-
crowave driving, since the typical Rydberg energy split-
ting lies in the microwave frequencies, and, consequently,
many Rydberg states will be efficiently coupled by the
drive (through subsequent, near-resonant one photon ab-
sorptions). The atomic transport process which we want
to parallel with the Anderson scenario is the transport of
electronic population initially prepared in a well defined
atomic initial state |φ0〉 = |n0, �0, m0〉 (where spherical
quantum numbers are used, as will be done throughout
the sequal of this paper) towards the atomic continuum —
easily measured as the ionization yield Pion for given field
amplitude F , field frequency ω, and interaction time t.
To make the analogy complete, we have to remind our-
selves of the slow variation of the level splitting with en-
ergy in the Rydberg domain. As a consequence of this
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unharmonicity of the spectrum, the subsequent one pho-
ton transition matrix elements which establish the “hop-
ping matrix elements” between the different “sites” on the
energy axis mimic a random series [12], due to the imper-
fect matching (tantamount to quasi random detuning) of
the driving frequency with the exact transition frequency
(much as the simplest random number generators built
on a modulo operation [13]). Consequently, if we replace
“transmission/reflection” in the above transmission prob-
lem à la Anderson by “absorption/emission” in the atomic
excitation process, 1D configuration space by the energy
axis, and the attached leads by the atomic continuum, we
encounter precisely the same scenario: an exponentially
large number of paths visiting different sites (near res-
onantly coupled Rydberg states in the atomic problem)
accumulate quasi random phases on exit from the sam-
ple, i.e., at the ionization threshold. If one photon tran-
sitions from the last near resonantly coupled bound state
to the continuum define the dominant ionization chan-
nel, the atomic ionization yield will be proportional to
this state’s population — determined by the localization
parameter ξ/L already familiar from the Anderson sce-
nario. Again, the sample length L is given by the number
of sites which span the lattice, equivalent to the ioniza-
tion potential of the atomic initial state in multiples of
the driving field photon energy. Provided ξ/L � 1, the
Anderson model predicts exponential suppression of the
ionization yield due to quantum interference. Despite
the strong, near resonant driving, the atom will cease ab-
sorbing energy from the field!

In fact, there already are abundant experimental
data [14–16,18] which indicate that the above mechanism
is at work in driven Rydberg states of atomic hydrogen
and of alkali atoms. The central experimental result is
an increase of the “scaled ionization threshold amplitude”
F

(10%)
0 = F (10%)n4

0 with increasing principal quantum
number n0 of the initial atomic state. In other words,
the field amplitude F

(10%)
0 required to ionize 10% of the

atoms, at given field frequency ω and interaction time t,
measured in units of the average Coulomb field ∼ n−4

0 ex-
perienced by the electron on its unperturbed initial Kepler
orbit, increases as we decrease the ionization potential of
the atomic initial state! This is in dramatic contradiction
with the result of a classical treatment, which predicts
systematically smaller ionization thresholds (due to clas-
sically chaotic phase space transport) than observed in the
experiment. Consequently, there exists a range of field am-
plitudes which induce efficient classical ionization, whilst
the experimentally observed yield is close to zero. This
quantum suppression of classically chaotic ionization is
interpreted as a signature of Anderson localization, and
traditionally termed “dynamical localization”, such as to
identify dynamical chaos as the cause of the quasi-rando-
mization of the hopping matrix elements in the Anderson
picture. However, this experimental finding is only con-
sistent with the hypothesis of Anderson localization, it is
not a clear proof — simply since one may imagine different
mechanisms which inhibit the ionization process, such as
semiclassical stabilization effects caused by (partial) bar-

riers in phase space [17,19,20]. Furthermore, most experi-
ments have been performed under slightly different exper-
imental conditions: not only have different atomic species
been used, but also different atomic initial states were ex-
posed to microwave fields of different frequencies ω and
of variable duration t. All available experimental data ex-
hibit large quantitative differences between the ionization
threshold of atomic hydrogen on the one hand and of non-
hydrogenic initial states of alkali atoms on the other, with
the alkali thresholds down by a factor five to ten as com-
pared to the hydrogen thresholds [19]. The original theory
of dynamical localization in driven atomic systems [21],
based on a very crude model of the actual bound state
atomic dynamics, is not suited to explain these quantita-
tive differences nor to definitively exclude processes dis-
tinct from Anderson localization which might cause the
observed increase of F

(10%)
0 .

What we therefore need is an accurate theoretical
treatment of microwave driven one electron Rydberg
states of atomic hydrogen and of alkali atoms. Such treat-
ment is not only required to explain the experimental find-
ings so far available in a consistent and unified way, but
also to guide future experiments which seek to test quanti-
tative predictions which follow from Anderson localization
theory for the atomic ionization process.

3 An accurate treatment of one electron
Rydberg states under electromagnetic driving

Our specific problem is described by the 2π/ω-periodic
Hamiltonian

H(t) =
p2

2
+ Vatom(r) + F · r cosωt, r > 0, (1)

where Vatom(r) denotes the atomic potential seen by the
valence electron, which is taken care of by a R-matrix
approach [22]1. The periodicity of H suggests to explore
Floquet theory [24,25], and we therefore end up solving
the Floquet eigenvalue problem

H|εj〉 = εj |εj〉 , (2)

with the Floquet Hamiltonian

H = H − i∂t, (3)

the spectrum of which is invariant under translations by ω.
Knowledge of the |εj〉 and εj within an energy range of
width ω is therefore sufficient for a complete description
of the dynamics.

After a further Fourier transform of the 2π/ω-
periodic |εj〉, amended by complex dilation of the
Hamiltonian [25,26], the eigenvalue problem is represented

1 The R-matrix treatment requires input of the quantum de-
fects of the non-hydrogenic angular momentum states of the
unperturbed alkali atoms, known from high precision spec-
troscopy experiments [23].
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in a real Sturmian basis, what converts (3) into a block-
tridiagonal, complex symmetric, sparse banded eigenvalue
problem [22,25,27]. Note that the strong selection rules
induced by the Sturmian basis are absolutely crucial for
the numerical treatment of our problem, since they al-
low for a considerable reduction of the required memory.
In the parameter range typically employed in the labora-
tory, typical dimensions are 106×104, what nonetheless re-
quires a very large parallel supercomputer. Indeed, all the
results presented hereafter were obtained on the CRAY
T3E of the High Performance Computing Center RZG of
the Max-Planck-Society at Garching and, once this ma-
chine became too small, on the Hitachi SR8000-F1 of the
Bavarian Academy of Sciences in Munich. Though, the
availability of such a large machine is not enough. In ad-
dition, an efficient parallel implementation of the Lanczos
diagonalization routine is needed, which is by no means
a trivial requirement, due to considerable communication
between different (and not only adjacent) processors of
the parallel machine.

Once the theoretical and numerical machinery briefly
sketched above is assembled, we can start our “numeri-
cal experiment”, which closely mimics the reality in the
laboratory. The “counts” which the numerical experimen-
talist has to collect much as his colleague in the real lab
are the poles of the resolvent operator in the lower half
of the complex plane [28], i.e. the complex eigenvalues
εj = Ej − iΓj/2 of the above eigenvalue problem. From
these we can immediately extract the ionization yield [25]

Pion = 1 −
∑

ε

|〈φ0|ε〉|2 exp(−Γεt) , (4)

for the specific choice of |φ0〉, t, ω, and F . Note that ap-
prox. 4000 . . .10000 poles are typically collected here. This
is simply due to the fact that the decomposition of the
atomic initial state |φ0〉 in the dressed state basis is ex-
tremely broad in our present case [29], what is a direct
consequence of the efficient destruction of good quantum
numbers by the driving microwave field, and, hence, of
quantum chaos.

4 A unified view on Anderson localization
in driven atoms

With the above, we can now perform a direct compari-
son of the ionization thresholds of atomic Rydberg states
of hydrogen and of those of alkali Rydberg states, under
precisely equivalent conditions. For the sake of comparison
to the arguably largest experimental data set (produced
in the Stony Brook group [30]), we specifically choose
ω/2π = 36 GHz, t = 327 × 2π/ω, and n0 = 28 . . . 80,
�0 = m0 = 0, where m0 is conserved under linearly polar-
ized driving. Precisely as in the laboratory, we scan F from
low to high values, monitor the dependence of Pion on F ,
and extract F

(10%)
0 , for increasing values of n0. Figure 2

shows a comparison of our numerical results for lithium
�0 = 0 states to laboratory results on atomic hydrogen.

0 1 2 3
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Fig. 2. Comparison of the ionization threshold of atomic hy-
drogen (obtained in laboratory experiments [14,30]; light sym-
bols) and of lithium (�0 = 0) Rydberg states (from our nu-
merical experiment; dark symbols) under microwave driving
of duration t = 327 × 2π/ω at ω/2π = 36 GHz, in the range
n0 = 28 . . . 80 of principal quantum numbers (from left to right,
since ω0 = ωn3

0). Since the laboratory values of the physical
parameters are identical, the present plot in scaled units does
not imply any a priori assumptions on alkali scaling laws!

Surprisingly, and in perfect contradiction to all published
experimental evidence, the nonhydrogenic (the �0 = 0
state carries the largest quantum defect δ�0=0 = 0.399468)
lithium Rydberg states exhibit essentially the same ioniza-
tion thresholds as atomic hydrogen in regime (I), i.e. for
“scaled frequencies” ω0 = ωn3

0 > 0.8. Only for decreasing
values of n0 leading to smaller values of ω0 do we observe
an increasing discrepancy between the hydrogenic and al-
kali thresholds. It turns our that this can be traced back to
the local density of states in the Rydberg series of the dif-
ferent atomic species [27]: for ω larger than the local hydro-
genic level spacing — which scales like n−3

0 , hence ω0 � 1
— the atomic excitation process is essentially unaffected
by the spectral substructure in the alkalis. The atomic sys-
tem offers a ladder of near resonant one photon transitions
connecting |φ0〉 to the continuum (see Fig. 1), and it is ir-
relevant for the transport process whether this occurs un-
der the participation or in the absence of non-hydrogenic
states. However, once the driving frequency is smaller than
the hydrogenic level spacing but still larger than the split-
ting between the non-hydrogenic alkali initial state and
the hydrogenic manifold, the same sequence of near reso-
nant one photon transitions can still be established in the
alkali atom, whilst in hydrogen only sequences of higher
order transitions are left to mediate the ionization process.
Hence, the realm of the Anderson scenario outlined in the
introduction extends over a wider range of principal quan-
tum numbers in the alkali species than in atomic hydro-
gen, and this is indeed manifest in Figure 2: in regime (II),
with 0.4 � ω0 � 0.8, the lithium data continue to exhibit
decreasing thresholds with decreasing ω0, as an indicator
of Anderson localization, whilst the hydrogenic thresholds
rapidly increase as the binding potential is increased (and
the local density of states is decreased, as compared to
the photon energy). Finally, in regime (III), also the lo-
cal energy splitting in the alkali atom is too large to be
driven near resonantly by a single photon. The Anderson
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scenario breaks down, and the thresholds saturate in the
plot of Figure 2.

The above results hold, at least, a two-fold message:
first, there is the prediction that comparable ionization
thresholds for alkali and hydrogen Rydberg states will
be observed once the driving frequency is larger than
the spacing between adjacent hydrogenic manifolds. This
quantitative prediction can be checked immediately in
state of the art laboratory experiments [18]. Second,
when re-analyzing all available experimental data on the
microwave ionization of non-hydrogenic alkali Rydberg
states by scaling the driving field amplitude and frequency
as done in Figure 2, we find [31] that all these data
were obtained in regimes (II) and (III), what explains
the apparently dramaticly enhanced ionization yields of
non-hydrogenic alkali Rydberg states as compared to hy-
drogen [27,31]. Note that this discrepancy remained a
puzzle over more than one decade [30], since, so far,
precisely identical experimental conditions for different
atomic species were never established in the lab, and the
appropriate scaling of F and ω was controversial due to
the badly defined classical analog of the alkali Rydberg
dynamics [16,19,30]. As a matter of fact, our compar-
ison of hydrogen and lithium data in terms of scaled
units in Figure 2 do not imply any a priori assumptions,
since they were obtained for the same laboratory values
of all physical parameters, but the fact that alkali and
hydrogen thresholds coincide in regime (I) proves that,
for sufficiently high driving frequencies, the hydrogenic
scaling holds even for alkalis! Even more, we do know by
now [31] that also non-hydrogenic initial states of sodium
and rubidium exhibit the same, hydrogenic, threshold in
regime (I), what strongly suggests that this is a universal
threshold for one-electron Rydberg states. Only this uni-
versality makes the increase of F

(10%)
0 with ω0 or n3

0 a
sufficient condition for the Anderson scenario to prevail,
since only the universality shows that the only relevant
ingredient is the local density of states compared to the
photon energy.

There is another consequence of Anderson localization
theory which can be imported to our atomic system: the
localization length ξ is really well-defined a quantity only
in the limit of infinite sample length, and will fluctuate
around this limiting value for finite L [32]. The theoretical
modelling of the conductance across an Anderson localized
1D wire of finite length L predicts a normal distribution of
the logarithm of the properly normalized conductance g,
if sampled over different realizations of the random lattice
potential (see Fig. 1), at fixed ξ/L [32]. Since the (meso-
scopic) conductance is given by nothing but a sum over
transition matrix elements (from left to right of the sam-
ple) [33], we can come up with an analogous definition of
the “atomic conductance” in our ionization problem [34],

g :=
1
∆

∑

j

|〈φ0|εj〉|2Γj , (5)

since the decay rates Γj can be understood as transition
matrix elements of a suitably defined Floquet scattering
problem [35] (with ∆ the average level spacing). Now, if
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Fig. 3. Distribution (histograms) of the atomic conductance g
of a 1D Rydberg atom [34,35], sampled over 500 different re-
alizations of the localization parameter ξ/L = 0.2, in the fre-
quency range ω0 = 2.0 . . . 2.5, for n0 = 40 (left) and n0 = 100
(right). The log-normal fit (smooth curve) is excellent for
n0 = 100, in perfect quantitative agreement with Anderson
localization theory [32]. The deviations from log-normal be-
haviour for n0 = 40 reflect a finite size effect.

Anderson is at work in the atomic problem, the atomic
conductance has to exhibit the same statistical proper-
ties as required by the theory of disordered transport —
and, indeed, it does! Figure 3 shows the distribution of
the atomic conductance of a 1D model atom [34] (the
electron is confined to the configuration space axis par-
allel to the polarization of the driving field), for fixed
ξ/L = 0.2 (which is given in terms of n0, F, ω, accord-
ing to the original theory of dynamical localization [21]),
and for two different values n0 = 40, 100 of the princi-
pal quantum number2. The log-normal fit to the data is
excellent for n0 = 100, what represents another, indepen-
dent and quantitative indicator of Anderson localization
as the dominant mechanism which determines the energy
exchange between the atom and the field. We also observe
in Figure 3 that the fit is significantly worse for n0 = 40,
what, however, does not contradict our preceding state-
ment: at too low quantum numbers, the atomic sample
size L, i.e. the number of near resonantly coupled Rydberg
states between |φ0〉 and the continuum threshold is too
small (L � 10) to allow for a smooth exponential local-
ization of the electronic wavefunction over the energy axis
(ξ = 0.2, L = 2). The figure therefore simply highlights a
finite size effect.

Finally, Figure 4 shows the physical imprint of the
log-normal distribution of Figure 3, the dependence of
the ionization yield Pion on the scaled frequency ω0,
at ξ/L = 0.2 (below threshold in Fig. 2): the yield is
typically very small, close to zero, but exhibits strong,
erratic enhancements at particular values of ω0. Corre-
spondingly, the atomic conductance g fluctuates on a log-
arithmic scale, in the right column of the figure. This is
nothing but the immediate signature of the highly sen-
sitive interference of the many paths defined by sub-
sequent absorption and emission events mediating the

2 For each plot approx. 500 complex-valued spectra have
been sampled, making such statistics even for the 1D model
atom a rather expensive enterprise. By now, however, we have
first evidence from 3D calculations that the same result can be
expected for the real atom [29].
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Fig. 4. Ionization yield Pion (left) and atomic conductance g
(right) of a 1D Rydberg atom [34,35], as a function of the
scaled frequency ω0, in the Anderson/dynamically localized
regime at ξ/L = 0.2, n0 = 100 (below threshold in Fig. 2).

transition from the initial state to the atomic continuum
(see Fig. 1), and a specific signature of Anderson localiza-
tion. The reader should contemplate this strongly fluctu-
ating signal, since what fluctuates is a quantity obtained
from a weighted average over the entire Floquet spectrum,
and not just one single rate Γj !

5 Conclusion

We provided two independent, quantitative proofs for
Anderson localization as the dominant mechanism which
governs the excitation and ionization process of strongly
driven one electron Rydberg systems. Given the universal
ionization threshold which we observed for atomic hydro-
gen and lithium Rydberg states in the high frequency pa-
rameter range, it appears legitimate to speculate that this
disorder-induced quantum interference effect can be gen-
eralized for an even larger class of driven atomic or molec-
ular system, if only the simple Anderson scenario can be
established on the energy axis, as depicted in Figure 1.

This paper is dedicated to Peter Lambropoulos, and might
serve to illustrate a remark due to Bertrand Russell — the
pursuit of quantitative precision is as arduous as it is important
— in his “ABC of relativity”, which could be due to Peter as
well. Support as a Grand Challenge project at the Leibniz-
Rechenzentrum of the Bavarian Academy of Sciences is most
gratefully acknowledged.

References

1. C.A. Müller, C. Miniatura, J. Phys. A 35, 10163 (2002)
2. P. Anderson, Phys. Rev. 109, 1492 (1958)
3. T. Ericson, Phys. Rev. Lett. 5, 430 (1960)
4. O. Bohigas, S. Tomsovic, D. Ullmo, Phys. Rep. 223, 43

(1993)

5. Mesoscopic Quantum Physics, edited by E. Akkermans
et al. (North Holland, Amsterdam, 1995)

6. A.J. Lichtenberg, M.A. Lieberman, Regular and Stochastic
Motion (Springer, New York, 1983)

7. D. Delande, A. Buchleitner, Adv. At. Mol. Opt. Phys. 35,
85 (1994)

8. O. Bohigas, M.J. Giannoni, C. Schmidt, Phys. Rev. Lett.
52, 1 (1984)

9. C.E. Porter, Statistical theories of spectra: Fluctuations
(Academic Press, New York, 1965)

10. H. Katori, S. Schlipf, H. Walther, Phys. Rev. Lett. 79,
2221 (1997)

11. M. Greiner et al., Nature 415, 39 (2002)
12. N. Brenner, S. Fishman, J. Phys. A 29, 7199 (1996)
13. W.H. Press et al., Numerical Recipes in Fortran

(Cambridge University Press, Cambridge, 1986)
14. E.J. Galvez, B.E. Sauer, L. Moormann, P.M. Koch, D.

Richards, Phys. Rev. Lett. 61, 2011 (1988)
15. J.E. Bayfield, G. Casati, I. Guarneri, D.W. Sokol, Phys.

Rev. Lett. 63, 364 (1989)
16. M. Arndt, A. Buchleitner, R.N. Mantegna, H. Walther,

Phys. Rev. Lett. 67, 2435 (1991)
17. R. Graham, Comm. At. Mol. Phys. 25, 219 (1991)
18. M.W. Noel, M.W. Griffith, T.F. Gallagher, Phys. Rev. A

62, 063401 (2000)
19. O. Benson, A. Buchleitner, M. Arndt, R.N. Mantegna, H.

Walther, Phys. Rev. A 51, 4862 (1995)
20. A. Buchleitner, D. Delande, J. Zakrzewski, Phys. Rep.

368, 409 (2002)
21. S. Fishman, D.R. Grempel, R. Prange, Phys. Rev. Lett.
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